Rainbow domination in the lexicographic product of graphs

نویسندگان

  • Tadeja Kraner Sumenjak
  • Douglas F. Rall
  • Aleksandra Tepeh
چکیده

A k-rainbow dominating function of a graph G is a map f from V (G) to the set of all subsets of {1, 2, . . . , k} such that {1, . . . , k} = ⋃ u∈N(v) f(u) whenever v is a vertex with f(v) = ∅. The k-rainbow domination number of G is the invariant γrk(G), which is the minimum sum (over all the vertices of G) of the cardinalities of the subsets assigned by a k-rainbow dominating function. We focus on the 2-rainbow domination number of the lexicographic product of graphs and prove sharp lower and upper bounds for this number. In fact, we prove the exact value of γr2(G ◦ H) in terms of domination invariants of G except for the case when γr2(H) = 3 and there exists a minimum 2rainbow dominating function of H such that there is a vertex in H with the label {1, 2}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

The 3-rainbow index of graph operations

A tree T , in an edge-colored graph G, is called a rainbow tree if no two edges of T are assigned the same color. A k-rainbow coloring of G is an edge coloring of G having the property that for every set S of k vertices of G, there exists a rainbow tree T in G such that S ⊆ V (T ). The minimum number of colors needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by rxk(G). G...

متن کامل

On outer-connected domination for graph products

An outer-connected dominating set for an arbitrary graph G is a set D̃ ⊆ V such that D̃ is a dominating set and the induced subgraph G[V \ D̃] be connected. In this paper, we focus on the outerconnected domination number of the product of graphs. We investigate the existence of outer-connected dominating set in lexicographic product and Corona of two arbitrary graphs, and we present upper bounds f...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2013